768 research outputs found

    Perspective on Reversible to Irreversible Transitions in Periodic Driven Many Body Systems and Future Directions For Classical and Quantum Systems

    Full text link
    Reversible to irreversible (R-IR) transitions arise in numerous periodically driven collectively interacting systems that, after a certain number of driving cycles, organize into a reversible state where the particle trajectories repeat, or remain irreversible with chaotic motion. R-IR transitions were first systematically studied for periodically sheared dilute colloids, and appear in a wide variety of both soft and hard matter systems, including amorphous solids, crystals, vortices in type-II superconductors, and magnetic textures. In some cases, the reversible transition is an absorbing phase transition with a critical divergence in the organization time scale. R-IR systems can store multiple memories and exhibit return point memory. We give an overview of R-IR transitions including recent advances in the field, and discuss how the general framework of R-IR transitions could be applied to a much broader class of periodically driven nonequilibrium systems, including soft and hard condensed matter systems, astrophysics, biological systems, and social systems. Some likely candidate systems are commensurate-incommensurate states, systems exhibiting hysteresis or avalanches, and nonequilibrium pattern forming states. Periodic driving could be applied to hard condensed matter systems to see if R-IR transitions occur in metal-insulator transitions, semiconductors, electron glasses, electron nematics, cold atom systems, or Bose-Einstein condensates. R-IR transitions could also be examined in dynamical systems where synchronization or phase locking occurs. We discuss the use of complex periodic driving such as changing drive directions or multiple frequencies as a method to retain complex multiple memories. Finally, we describe features of classical and quantum time crystals that could suggest the occurrence of R-IR transitions in these systems.Comment: 25 pages, 27 figure

    Theoretical Description of Resistive Behavior near a Quantum Vortex-Glass Transition

    Full text link
    Resistive behaviors at nonzero temperatures (T > 0) reflecting a quantum vortex-glass (VG) transition (the so-called field-tuned superconductor-insulator transition at T=0) are studied based on a quantum Ginzburg-Landau (GL) action for a s-wave pairing case containing microscopic details. The ordinary dissipative dynamics of the pair-field is assumed on the basis of a consistency between the fluctuation conductance terms excluded from GL approach and an observed negative magnetoresistance. It is shown that the VG contribution, G_{vg}(B=B_{vg}, T \to 0),to 2D fluctuation conductance at the VG transition field B_{vg} depends on the strength of a repulsive-interaction between electrons and takes a universal value only in the ordinary dirty limit neglecting the electron-repulsion. Available resistivity data near B_{vg} are discussed based on our results, and extensions to the cases of a d-wave pairing and of 3D systems are briefly commented on.Comment: Explanation of data in strongly disordered case, as well as Fig.2 and 3, was renewed, and comments on recent publications were added. To appear in J.Phys.Soc. Jp

    Radiofrequency ablation of lung tumours

    Get PDF
    Pulmonary radiofrequency ablation (RFA) has become an increasingly adopted treatment option for primary and metastatic lung tumours. It is mainly performed in patients with unresectable or medically inoperable lung neoplasms. The immediate technical success rate is over 95%, with a low periprocedural mortality rate and 8–12% major complication rate. Pneumothorax represents the most frequent complication, but requires a chest tube drain in less than 10% of cases. Sustained complete tumour response has been reported in 85–90% of target lesions. Lesion size represents the most important risk factor for local recurrence. Survival data are still scarce, but initial results are very promising. In patients with stage I non-small-cell lung cancer, 1- and 2-year survival rates are within the ranges of 78–95% and 57–84%, respectively, with corresponding cancer-specific survival rates of 92% and 73%. In selected cases, the combination of RFA and radiotherapy could improve these results. In patients with colorectal lung metastasis, initial studies have reported survival data that compare favourably with the results of metastasectomy, with up to a 45% 5-year survival rate. Further studies are needed to understand the potential role of RFA as a palliative treatment in more advanced disease and the possible combination of RFA with other treatment options

    Strong quantum fluctuation of vortices in the new superconductor MgB2MgB_2

    Full text link
    By using transport and magnetic measurement, the upper critical field Hc2(T)H_{c2}(T) and the irreversibility line Hirr(T)H_{irr}(T) has been determined. A big separation between Hc2(0)H_{c2}(0) and Hirr(0)H_{irr}(0) has been found showing the existence of a quantum vortex liquid state induced by quantum fluctuation of vortices in the new superconductor MgB2MgB_2. Further investigation on the magnetic relaxation shows that both the quantum tunneling and the thermally activated flux creep weakly depends on temperature. But when the melting field HirrH_{irr} is approached, a drastic rising of the relaxation rate is observed. This may imply that the melting of the vortex matter at a finite temperature is also induced by the quantum fluctuation of vortices.Comment: 4 pages, 4 figure
    corecore